The taut polynomial and the Alexander polynomial

نویسندگان

چکیده

Landry, Minsky and Taylor defined the taut polynomial of a veering triangulation. Its specialisations generalise Teichmuller fibred face Thurston norm ball. We prove that triangulation is equal to certain twisted Alexander underlying manifold. Then we give formulas relating untwisted polynomial. There are two formulas; one holds when maximal free abelian cover edge-orientable, another it not edge-orientable. Furthermore, consider 3-manifolds obtained by Dehn filling In this case formula relates specialisation under Dehn-filled This extends theorem McMullen connecting nonfibred setting, improves in case. also sufficient necessary condition for existence an orientable class cone over

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Alexander Polynomial for Tangles

WExpand@expr_D := Expand@expr . w_W ¦ Signature@wD * Sort@wDD; WM@___, 0, ___D = 0; a_ ~WM~ b_ := WExpandADistribute@a ** bD . Ic1_. * w1_WM ** Ic2_. * w2_WM ¦ c1 c2 Join@w1, w2D E; WM@a_, b_, c__D := a ~WM~ WM@b, cD; IM@8<, expr_D := expr; IM@i_, w_WD := If@MemberQ@w, iD, -H-1L^Position@w, iD@@1, 1DD DeleteCases@w, iD, 0D; IM@8is___, i_<, w_WD := IM@8is<, IM@i, wDD; IM@is_List, expr_D := exp...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

And the Multi - Variable Alexander Polynomial

We define a Floer-homology invariant for links in S 3 , and study its properties .

متن کامل

A new property of the Alexander polynomial

Alexander introduced his link invariant by a state model in 1928. We consider a slightly different state model for links in the solid torus (e.g. knots in the complement of their meridian). The result is a link invariant which coincides with the Alexander polynomial up to some normalisation. This normalisation depends not only as usual on the writhe of the link diagram but also on its Whitney i...

متن کامل

Zeros of the Alexander Polynomial of Knot

The leading coefficient of the Alexander polynomial of a knot is the most informative element in this invariant, and the growth of orders of the first homology of cyclic branched covering spaces is also a familiar subject. Accordingly, there are a lot of investigations into each subject. However, there is no study which deal with the both subjects in a same context. In this paper, we show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Topology

سال: 2023

ISSN: ['1753-8424', '1753-8416']

DOI: https://doi.org/10.1112/topo.12302